“How to disassembling and reassemble”
THANKS TO:
- Donald Whisnant (Dewtronics) for making the “M6811” Disassembler.

- Alan R.  Baldwin,  Kent State University, Kent, Ohio for making the ASxxxx Cross Assembler “AS6811”  

   and the Linker “ASLINK”
- Tech Edge for share the binary file converter from S19 to BIN “BINCVT”

- Mark Mansur for making the nice software TunerPro.

- The persons that have collaborate on this thread.

At the Third Generation ORG forum DIY PROM was started a new thread with the Topic:

“Source code for dummies....Ask questions here!”
http://www.thirdgen.org/techbb2/showthread.php?s=&postid=1913265#post1913265
It was discussed how to make a disassembling and how to reassemble to generate the same BIN.

During that process the code APYP and the ANHT was used as a reference.

The thread was started by “JP84Z430HP” with the title:
“Source code for dummies....Ask questions here!”
I have copied here only the post’s related to “How to disassembling and reassemble” so that you can read how to do it yourself (DIY)

The process is simple and efficient. So try it.

JP84Z430HP

Source code for dummies....Ask questions here! 

I'd like to start gathering some source code notes, and share them as I gather them. I thought this would be a good place to do it. As long as the MOD's approve, and we keep this on topic, it will be an invaluable thread. I will be glad to add what very little I know whenever I can. 

I'm sure there are others that are serious about learning this, but like me, don't have all that much time in a day to work with it, and I think that sharing questions, and thoughts here will be very helpful. 

If possible, I'd POSSIBLY like to compile some of this into a tech article, and have stuff put into plain english. I know that it will be impossible to make it understandable to the point that everybody can understand it, but for those of us that do have an idea of what's going on, just not a complete understanding of the instructions, etc.... I think this will be a big help. 

I'd like to start with the first question: 

I'm going through some old carb ECM disassemblies right now (since that's what's still on my car). I see several places that there's a comment that say "FCB $06 ;xxxx LSB", then on the next line the same "FCB $40 ;xxxx MSB". I take that to mean that these are 8-bit bytes? If so, are they the same thing as a double byte? In other words, could it have been "FDB $0640 ;xxxx"?

Mangus

To answer the question at the end of your original post, many times you'll see two FCBs (single bytes) one after the other (specifically when dumping RAM to a datastream such as the ALDL port) labeled MSB and LSB (most-significant byte and least-significant byte) . When you see this, it typically means that the two bytes will be combined to form a 16 bit (two byte) number. 

MSB, or most-significant byte (and sometimes most-significant bit), means, essentially, the portion of the number that holds the most value. 

For instance, in the number 23, the most-significant digit is 2 (as it represents the number 20s in this example). The least-significant is 3. 

So in your example, the two bytes combine to make $0640. If they were used together (or, better said, accessed together) than they would be FDB. However, since you normally see this in areas of memory that are dumped (or reference [point to] memory that is dumped) to a data stream which can only be represented a byte at a time, you see them separated.

Grumpy

quote:


Originally posted by JP84Z430HP 
I'd like to start gathering some source code notes, and share them as I gather them. 




My best suggestion, is just grabbing a copy of the Source Code for the 58/60 that's on the net. 
Then an assemblier. 
Get to where you can assemble that. Might try entering all the same specs as one of the syclone calibrations. 

Then once you have a rock solid foundation, try manipulating, or further understanding that, .asm. There's a million little details that change from even one assemblier to another. So you first need a collection of tools that you know work, and Ground Zero. 

You'll also need a copy of the Motorola Pink Book. 

Then once you've gotten to master the one mask, you can go from there. Then find a target mask, a disassembly, and going for it from there. 

In reading thru the 60 Source code lots of items get obvious. 

Like Prom burning, ya kinda gotta jump in there, go slow, and pay attention to details. 

Least that's the path I'm taking. YMMV

Cobra289

 “How to disassemble four dummies” (I am a dummy, so just for me level) 

Well I found my way via the NET. 

You need to download a dissembler, use this link: http://www.dewtronics.com/m6811dis.html 
You download also the AS6811N assembler ( I think we need it later), use this link: http://www.dewtronics.com/cgi-bin/asxxxx.pl 


Download the DOS 16-BIT Version 1.0 (tick the “Automotive”) 

You get the zip file “m6811dis.zip” after you extract the files you need to read the “M6811DIS.doc” 

There you can find instructions how to make a “CONTROL FILE” very important file. 

Part 1 (How to get at the DOS prom) 
Assume you have windows XP you go to “run” and type “cmd” and you get the black box (DOS box) with the next [C:\documents and settings\] 
At this point you type “cd..” and you are now on [C:\>] (don’t forget to type the dots) 

Part 2 (How to get to the dissembler) 
Assume you have unzipped the file that you have downloaded at the drive “C:” 
So you are under the black box and you see [C:\>] at that level you type “cd m6811dis” 
You are now at [C:\m6811dis>] 
Keep the black box open and go back to windows. 

Part 3 (How to make a “Control File”) 
You are in windows, start “Notepad” and you do a copy and paste from the next text: 
; This control file is called APYP.txt

;

input   APYP.bin       ;this is the binary input file

output  APYP.DIS       ;this is the disassembly source/listing file

load C000

addresses

label ffd6 scivect

label ffd8 spivect

label ffda paievect

label ffdc paovect

label ffde tovfvect

label ffe0 ti4o5vect

label ffe2 to4vect

label ffe4 to3vect

label ffe6 to2vect

label ffe8 to1vect

label ffea ti3vect

label ffec ti2vect

label ffee ti1vect

label fff0 rtivect

label fff2 irqvect

label fff4 xirqvect

label fff6 swivect

label fff8 ilopvect

label fffa copvect

label fffc cmonvect

label fffe rstvect

indirect ffd6 scirtn

indirect ffd8 spirtn

indirect ffda paiertn

indirect ffdc paortn

indirect ffde tovfrtn

indirect ffe0 ti4o5rtn

indirect ffe2 to4rtn

indirect ffe4 to3rtn

indirect ffe6 to2rtn

indirect ffe8 to1rtn

indirect ffea ti3rtn

indirect ffec ti2rtn

indirect ffee ti1rtn

indirect fff0 rtirtn

indirect fff2 irqrtn

indirect fff4 xirqrtn

indirect fff6 swirtn

indirect fff8 iloprtn

indirect fffa coprtn

indirect fffc cmonrtn

indirect fffe reset

entry c710


As you see you need to give a name to this txt file so you save as “APYP.txt” (don’t worry it is not your BIN file, later you can make your own “Control File” 

The contents of this “Control File” you can read at the “M6811DIS.DOC”. 

Part 4 (What you need at the work directory [C:\m6811dis>] ) 
You need the BIN file that you will disassemble (in our case APYP.bin). 
You need the “Control File” that we just made. (APYP.txt) 

Part 5 (What next?) 
We go to Disneyland! 
We are able to make our first disassemble. How? 
We go back to our Black Box (you didn’t close it?) and we see the next: 
C:\m6811dis> 
At this point we type the next: 
"M6811dis APYP.txt" and the Black Box start to spit all the nice things. 

Part 6 (What's happened?) 
Now our dissembler has made a file with the name “APYP.DIS” 
Why? Because we have specified that at our “Control File” remember? 
input APYP.bin 
output APYP.DIS 

Part 7 (How to read this “APYP.DIS”) 
So I am happy that I found a commented file of the APYP at Moates server. 
The name is “APYP7165-relocatable.asm” you can open both files with “Notepad” and read and compare. 

NO, NO, NO, NO, 
I am not there, this is my experience ONLY and I want to share because it was difficult to been here. 

Here you can download the files that where used on this lesson: 
http://www.donostia.demon.nl/APYP.bin 
http://www.donostia.demon.nl/APYP.txt 
http://www.donostia.demon.nl/APYP7165-relocatable.asm 

The disassembled file is not there because that is the test that you need to pass. 

So who is next to make the next lesson in my level? (Remember dummies) 
If you want to correct this lesson you are welcome. 

Regards, 
Cobra289 

PS 
JP84Z430HP 
Thank you for starting this post.

MTPFI-MAF
OMG that was so helpful I just created my first APYP.DIS 

Now i have to print the 40 pages of M6811DIS.doc to read reread and read again and then put it in my 5th 3 ring binder so I can read it again. Thanks cobra I can finally take another tiny step forward on Source Code.

Grumpy

quote:


Originally posted by JP84Z430HP 
I did get ANHT to assemble, but I really don't know if it's correct or not. 




Just do a file compare to the .bin you started with. 

So it's disassemble, reassemble, file compare. 
Once it verifies, as being the same as the original .bin, you can start filling in the blanks, and commenting it. 

Once you get the ALDL datastream, you can fill in that part of the RAM, and that's a huge headstart since it gives the locations of the *most vital* stuff. 

Then using Edit, and find you can *just* cut and paste all the RAM locations, that you've defined, and the op codes. 

Once you *get* some items like what looks like a 3D table, ie main spark or a VE table, you'll see a common location. That probably will be the 3d/2D look up routine. 

And if it seems like there's an incredible amount of IAC stuff in there, there is.

Cobra289

Hi Guy’s, 

I think that everything that you are explaining will be for my next level. 

Reading other posts I thought that the instruction was clear. 

1- First make a disassembling from the BIN file. 
2- Make a reassembling so that you make the same BIN file. 
3 - Compare both files. (It should be equal) 

Later – Interact in the code, making patch files, change of remove things. 

So here is the deal: 

1 - I use the Dewtronics Disassembler “M6811DIS” to make a disassembling. (I get a “DIS” file) 
(This disassembler targets is the AS6811 assembler written by Alan Baldwin) 

2 - I make a reassembling using the “AS6811 assembler written by Alan Baldwin at Kent State 
University’s” 
3 – I get with out errors the next files; “APYP.LST” “APYP.REL” and “APYP.SYM” 

There is a “ASLINK.exe” but I don’t know how to use. (relocating linker) 

Here start my problem, “How can I get a BIN file from here?”

Grumpy

OK, at least it runs with your .txt file. 

If I'm not mistaken the 5xxx are references to the HUD. 
SO that's OK, 

In the .dis generated there's a few large blocks of code that are just lumps. Does everyone else get those?. 

LD116 L5809 
*** Warning: Branch Ref: 0x5809 is outside of Loaded Source File. 
LD12C LD12E LFA57 L00EA LFA55 LFA6A LDCA1 LC44F LDCA7 
LD13B LD177 LD16F LD173 LC44E LD12B LD1D8 LD1C9 LC1DF 
LD1BE LC232 LD1C6 LD20B LD1EB LD1F4 LD20E LD235 LD234 
LD299 
Pass 2 - Disassembling to Output File... 

*** Warning: Branch Ref: 0x5800 is outside of Loaded Source File. 

*** Warning: Branch Ref: 0x5806 is outside of Loaded Source File. 

*** Warning: Branch Ref: 0x5809 is outside of Loaded Source File. 

*** Warning: Branch Ref: 0x5803 is outside of Loaded Source File. 

*** Warning: Branch Ref: 0x5818 is outside of Loaded Source File. 

*** Warning: Branch Ref: 0x580C is outside of Loaded Source File. 

*** Warning: Branch Ref: 0x5815 is outside of Loaded Source File. 

Disassembly Complete 

And if I change the apyp.txt to anht.txt (and the file input and output file names) and load the anht.bin I get an Unrecognized command, error. 

Yeppeeee.

Cobra289
I think that you need to change the “load c000” for “load 8000” 
Also you need to change the “entry c710” for “entry b000” 

Load is the start point where “the relative load offset address of where the source binary file will be loaded” 

I quote the text from the disassembler: 

The “entry” command allows you to specify hard entry points within the source. Typically, most of the entry points in the source can be specified with indirects (see the “indirect” command). But occasionally you’ll run into a portion of code that for some reason has no indirect vector and requires a hard entry point 


So I put the “b000” because there start the algorithms. 
But like the text say you can put more of this “entry” or solve via the “indirects” I think that there is solution to solve the lumps.

RBob

Try using an 'entry' command to each of the lumps. The first address of these lumps are probably in the major loop lookup table. This may also break up the lumps requiring the addition of more entry commands. 
Cobra289

Hi RBob, 
Here are the "entry" that have try with good results for the ANHT code. 
code:


entry b000

entry ce5c

entry cebd

entry d121

entry d161

entry d270

entry d27d

entry d50c

entry d55c

entry d5c6

entry d6c1

entry d812

entry d87d

entry d9fc

entry e1c6




I forgot to tell you Bruce, you need to add the "addresses" under "load" to see the address that you need to enter in the "entry"

RBob

Here is a lump from your APYP.DIS: 
code:


LDEF0:
rts



.byte
0xD6,0x38,0x56,0x24,0x06,0xD6,0x36,0xC5


.byte
0x20,0x27,0x56,0xB6,0x01,0x1A,0xB1,0xC2


.byte
0x47,0x25,0x4E,0xFC,0xC2,0x45,0x7D,0x01





The first address of this lump is $DEF1. The rts at LDEF0 is one byte, so the next address is $DEF1. 

Put that address in as an entry and the disassembler will then also do that as a block of code, not data.

Cobra289

Hi RBob, 
I think that I solved the lumps. 
Here is the list of "entry" for the APYP code: 
code:


entry c710

entry def1

entry df57

entry dfad

entry e08f

entry e375

entry e52b

entry e781

entry ea8e

entry eb74

entry ec2d

entry ed91

entry ee8a

entry ef52

entry f0e8

entry ff81

entry ff89





It is a matter of doing pointing every starts of a lump with the corresponding address. Run the disassembler and find new "entry" 

Ok 
RBob can you help me with the assembly? 
Read previous post to see my problem.

Cobra289

Hi Grumpy, 
APYP.txt and APYP.DIS are updated on my site. 
http://www.donostia.demon.nl/APYP.DIS 
http://www.donostia.demon.nl/APYP.txt 

No lumps this time. 
The APYP.txt has the command "addresses" on it but if you will assemble you need to remove this command. [edit] allready removed. 

Thanks

Grumpy

quote:


Originally posted by JP84Z430HP 
Ugh, just when things were clearing up.....I'm now confused, since I was using a different method. What I was doing is taking the commented anht HAC and making it assemble. That way, once I had it all right, I could go in and make changes to a known good file and add comments to anything I was to change. 




That's the way I did the 60 Source Code. Took me well over a year to hammer it out. 

I'd strongly suggest you start with the method documented here, and then just cut and paste in the comments you have from the other one to the new way. This way starts you off without massive errors. The 58 took along time just to get to verify to the .bin. 

Looks like disassembling, the reassembling, verify to .bin, then commenting, then identifying routines is the best way to do it that I can see. Then doing the patches and what ever

RBob
quote:


Originally posted by JP84Z430HP 
Ugh, just when things were clearing up.....I'm now confused, since I was using a different method. What I was doing is taking the commented anht HAC and making it assemble. That way, once I had it all right, I could go in and make changes to a known good file and add comments to anything I was to change. 
. . . 


No problem with your method. As a matter of fact if you want $8D source code that is what I would recommend, exactly what you are doing. All the comments are there, tables are nicely formatted, jsut need to get it to assemble correctly. 

Just keep working on the asssembler errors until you get a clean assemble. Then create the bin (from the .s19 fiile) and compare that bin with a known ANHT bin. You will find some typo's in the ANHT.PDF source. So make the changes and rebuild the new bin. Compare it again until it matches up. 

If you get stuck post the error here and we'll see what we can do.

Cobra289

Hi RBob, 

Can you help me? 
I have done an assembly with the AS6811 and I get the next files: 
“APYP.LST” “APYP.REL” and “APYP.SYM” with out errors, but my next problem is how to get the S19 file that you mention. 

According the information of the assembler there is a “relocating linker” (ASLINK.EXE) but I don’t know how to use it. 
As sun as we know how to solve this problem get a BIN I will post here an instruction for dummies. 
Convert from S19 to BIN I don’t think will be a problem. 
http://www.donostia.demon.nl/APYP.LST 
http://www.donostia.demon.nl/APYP.REL 
http://www.donostia.demon.nl/APYP.SYM
MTPFI-MAF

ok I am following everything on the dissasembly and I am reading the M6811DIS.doc to have a full understanding of it the best I can. Now the Directions that were given on the dissasemble were excelent. 

1. Create control file (apyp.txt) 
2. You need the BIN file that you will disassemble (in our case APYP.bin). 
You need the “Control File” that we just made. (APYP.txt) 
3.tell it to dissasemble (M6811dis APYP.txt) 

ECT. 

Now I am so confused on how to even start to Assemble, this discussion went form English to a unfilmilar language quick. What is required to start assembley. does the assembler require a Control file or something similar and what command do I start with. I opened dos typed as6811 apypdis I get thousand of errors. What step did I miss. 

I apoliage for ignorance on my behalf 

EDIT: Thanks Cobra289 i was typing this as you posted your last post. I will tinker around with it more while you are doing the FOR DUMMBIES instructions. 

This disscussion is really good way to help people learn and think out side the Box

Cobra289
Hi MTPFI-MAF, 
Assuming that you are at the correct directory and you put the APYP.DIS at the same directory. 

You need to type the next: 
As6811 –xlos apyp.dis 
Check the screen shot that I made. 
There are more switches as you see but I don’t think that are needed at this moment. 

As you see there are no errors. 

I hope that RBob can help us converting those 3 file to a BIN so that we can compare. 


[image: image1.jpg]\Code\AS6811N>as6811

Sx000¢ Assenbler UOL.50+ C(Motorela 6811)

ge: [-dgxgalosf] filel [file2 £ile3 ...1
decinal listing
octal  listing
hex listing (default)
undef ined synbols made glohal
all user synhols made global
create list output £ileilLST]
create object output £ilel[REL]
create synbol output £ilel[SYH1
flag relocatable references by ° in listing file
f£lag relocatable references by mode in listing file

a
a
¥
1
£
£

\Code\AS6811N>as6811 —xlos apyp.dis

:\Code\ASEBLIND,




RBob

quote:


Originally posted by Cobra289 
Hi RBob, 

Can you help me? 
I have done an assembly with the AS6811 and I get the next files: 
“APYP.LST” “APYP.REL” and “APYP.SYM” with out errors, but my next problem is how to get the S19 file that you mention. 

. . . 

TIA. 
Cobra289 


Here is one way to use the linker, at the command line start the interactive linker mode: 

aslink -c 

Then at the prompt enter APYP, then the command to produce an s19 file: -s, then exit: -e. It will look like this: 

D:\as6811>aslink -c 

ASlink >> apyp 
ASlink >> -s 
ASlink >> -e 

The result will be the file apyp.s19 which can then be converted to a bin file that matches the original.

Cobra289

I DID IT!!! (With help off course)[image: image2.png]


 
IT WORKS 
I GET THE SAME BIN (Checked with TunerPro RT using “compare”) 

THANKS RBob, Thanks for your collaboration. 

And off course my thanks to all the others that participate on this tread. 
This was a real step by step guidance. (Some hits, some commandos, some enthusiasm, etc) 

Now I will write the next lesson for dummies like me. [image: image3.png]



Cobra289

“How to disassemble four dummies Lesson 2” (I am a dummy, so just for me level) 

First I need to expand a little the first lesson. 

Read the manual from “Dewtronics Dissembler M6811DIS” it will help a lot to understand how it works. 

Part 8 
Doing the disassembling you need to get all the CODE out, which means no “LUMPS” should be left. 
To clean all the lumps you do it via “entry”. Go to the first lump and you note the address, you add this address to the “entry” list and you run again the dissembler. You need to do this so many times as is required, but it goes fast. (The APYP.txt is all ready updated with all the “entry”). 

Part 9 
At the “Control File” you need to put the term “load” with and address and that means that will be different for every mask. (Check your “hac” look for the “.ORG” that address you need to put this value at the “load” in our case APYP with the mask $6E the value is “c000” 


1 – 
Reassembling 

You need the “AS6811 assembler written by Alan Baldwin at Kent State University’s” 
http://www.donostia.demon.nl/AS6811N.zip 

2 – 
Invoking AS6811 

After unzip you get the directory “AS6811N” here you put you disassembled file. (In our case APYP.DIS) 
You need to type the next: 
As6811 –xlos apyp.dis 

The software will make 3 files at the same directory. “APYP.LST” “APYP.REL” and “APYP.SYM” 

If there are no errors you can continue. (Errors will be displayed at the DOS box.) 

If you encounter errors you need to check the information at: 
http://shop-pdp.kent.edu/ashtml/asxhtm.htm “Invoking ASXXXX page 1-37” 
The nice thing of this is that you LST file will be marked with a symbol indicating the type of error. 
But if you do your work correctly you should not get any error. (That is easy to say for me after a couple of hours) 

3 – 
OK now we need to link the files. 

There is at the same directory ASLINK software. (We have at this directory our files “APYP.DIS APYP.LST APYP.REL and APYP.SYM”) 
So you next commando will be: 
aslink –c <----- After that you invoke a commando line from linker and it looks a little different. 
ASlink >> <----- it looks like this. 
At this point you type the next commando. 
ASlink >> apyp 
ASlink >> -s 
ASlink >> -e 

You will get the desired Motorola file type S19 in our case APYP.S19. 

4 – 
Conversion from S19 to BIN. 

The next step is to convert our new file “APYP.S19” to a BIN (APYP.BIN) 
To do this you need to download a conversion software “BINCVT” and you can fid at: 
http://www.techedge.com.au/download/bincvt.zip 

You extract the file in a new directory. 
You need at this directory the next file. “APYP.S19” 
To invoke the BINCVT you need to type the next: 
Bincvt apyp.s19 
At this directory you will get the DESIRED APYP.BIN. 
But we are NOT finished yet. 

5 – 
Compare both BIN’s. 

Compare the new BIN with the old Original BIN. 

We stay at the DIY-PROM and we download Mark’s TunerPro. 
http://tunerpro.markmansur.com/ 

We load the new BIN with TunerPro and we make a “Compare” and we set for comparation the original BIN file. 
You select “Tools” and “Difference tool” you will see at the top two windows “Find differences between” indicating witch file will be compared. 
You hit search an you will se nothing. (You are DONE) 
If you see differences, you are in trouble. 
My advice? 
Start again and take care about the details. 

I hope that this will help you; at least you have some directives in particular witch assembler and disassembler work together. 

My next target will be “Apply a patch” 
This is my first point to start: 
http://www.thirdgen.org/techbb2/sho...threadid=108380
Grumpy

quote:


Originally posted by Cobra289 


Try to understand the code instructions. 
It starts to like a “Reverse University” you find something; you start to read; and then start to learn stead of learn-read-find. 

Did you get further with the ANHT code? 
It likes that at the address $8988 and $f165 starts with a lot of padding? (Lots of $00) 




Yep, it one thing to just be able to read the code, and another to actually modify it. 

Taking care of large areas of 00's can be taken care of with this *note*. 
Fill $00, $FFED-* 

If you don't comment the 00's when it assembles the assemblier might just use whatever it sees laying around, ie notes that are commented out with ;'s. 

I got some oddities I haven't figured out yet. In some locations I get a CE when it should be a FE. The .asm reads correctly but the assemblier in some areas uses the FE instead of what should be an FE. Dunno what's up with that yet.
RBob 

quote:


Originally posted by Grumpy 
. . . I got some oddities I haven't figured out yet. In some locations I get a CE when it should be a FE. The .asm reads correctly but the assemblier in some areas uses the FE instead of what should be an FE. Dunno what's up with that yet. 


Just an educated guess, not looking at the code, the difference between a CE and FE is the type of load. This is most likely a LDX or LDY instruction. 

The CE is a load immediate. IE: load the value at the instruction. 

The FE is an extended address. IE: load the value found at that address. 

Look for a # that shouldn't be there. Or maybe an *, I think the as6811 assembler uses that for a particular addressing mode. 

RBob. 

P.S. you guys have it easy. I had to write my own disassembler to get this far. . .


 dimented24x7 

quote:


Originally posted by Grumpy 
Yep, it one thing to just be able to read the code, and another to actually modify it. 

Taking care of large areas of 00's can be taken care of with this *note*. 
Fill $00, $FFED-* 



You can also use the origin command to keep the vector table (or whatever else is there) in place rather then using fills. 

ORG $[start addr of table in hex (or in decimal w/o the '$')] 

Itll automatically pad the end of the actual code when assembled to ensure the vector table starts where it should. 
dimented24x7

the pneumonic stands for ORiGin, no? I think all motorola assemblers should recognise it. I used the fill command for awhile myself untill I realized (or someone told me?) that the ORG would keep things put and ensure theyre at the right address in the bin without having to figure out how much filler id need to use.

